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Figure 1. a) Bimanual gesture input on flat surfaces; b) Imaging passive ThermalTags that reflect heat from the hand; c) The thermal image for the
interacting hand; d) The thermal image of a triagular ThermalTag; e) Scan a Search ThermalTag to search on a TV; f) Handwrite letters to input search
keywords; g) Scan a tag on a landline phone to pair with it; h) Finger slide to adjust call volume.

ABSTRACT
The heterogeneous and ubiquitous input demands in smart
spaces call for an input device that can enable rich and
spontaneous interactions. We propose ThermalRing, a ther-
mal imaging smart ring using low-resolution thermal camera
for identity-anonymous, illumination-invariant, and power-
efficient sensing of both dynamic and static gestures. We also
design ThermalTag, thin and passive thermal imageable tags
that reflect the heat from the human hand. ThermalTag can be
easily made and applied onto everyday objects by users. We
develop sensing techniques for three typical input demands:
drawing gestures for device pairing, click and slide gestures
for device control, and tag scan gestures for quick access. The
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study results show that ThermalRing can recognize nine draw-
ing gestures with an overall accuracy of 90.9%, detect click
gestures with an accuracy of 94.9%, and identify among six
ThermalTags with an overall accuracy of 95.0%. Finally, we
show the versatility and potential of ThermalRing through
various applications.

Author Keywords
Thermal imaging;smart ring;gesture recognition;interactive
tags

CCS Concepts
•Human-centered computing → Graphics input devices;
Gestural input; Usability testing;
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INTRODUCTION
More and more everyday objects are becoming interactive
with the trend of Internet of Things (IoT). Such smart objects
use different input interfaces for their unique interaction de-
mands. Also, they are often scattered across various locations.
The heterogenous demands and varied locations call for a uni-
fied input device that can provide a rich, spontaneous, and
consistent interaction experience. Currently, smart phone is
widely used to interact with different smart devices. How-
ever, the size and weight of a smart phone can also introduce
inconveniences under certain circumstances. The process is
also complicated since users need to find the target device in
an APP first. Vocal commands can also be used for remote
control. However, the recognition can be difficult due to user
accent variances and background noises. Also, vocal control
systems can raise privacy concerns.

Many previous studies propose to use smart wearables as an
alternative to provide a more spontaneous interaction experi-
ence. Among them, smart rings can enable rich interactions
thanks to the dexterity of human fingers. Many of the pre-
viously proposed smart rings use Inertial Measurement Unit
(IMU) to recognize dynamic gestures. The IMU-based rings
could detect finger movements and recognize gestures [13, 14,
31, 37]. TypingRing [25] uses an IMU, two proximity sensors,
and a displacement sensor for on-surface typing purpose. Even
though IMUs are small and power efficient, they are not able
to detect static gestures. Smart rings with RGB cameras [24,
4] are used to recognize gestures and current context. How-
ever, the RGB camera can lead to severe privacy issues. Its
performance can vary greatly under different illumination con-
ditions. The power consumption of a regular RGB camera is
also usually too high for a small battery that can be integrated
into a ring.

We propose ThermalRing, a low-resolution thermal imaging
smart ring to enable a wide variety of spontaneous interactions
in smart spaces. As shown in Figure 1a, ThermalRing can
sense gestures performed by one hand (interacting hand) when
worn and aligned on the other hand (auxiliary hand). It can
also sense temperature differences, thus able to detect heat
radiative or reflective objects in the surrounding area. We
then propose ThermalTag, thermal-visible passive tags with
different shapes made by high heat reflective materials (e.g.
aluminum foil). When scanned by ThermalRing, ThermalTags
will be ’illuminated’ by the heat radiated from the human hand
and become visible to thermal cameras (Figure 1b). Thermal-
Tags can be easily made by end users in a DIY manner using
widely available materials and conveniently deployed on ev-
eryday objects and surfaces. Users can then use ThermalRing
to scan and identify ThermalTags for quick access and pairing
purposes.

Compared with IMU-based wearables, ThermalRing captures
image streams to recognize both dynamic and static gestures.
Compared with smart wearables using RGB cameras, Ther-
malRing is identity-anonymous, illumination-invariant, and
more power-efficient. Compared with other wearables like
smart watches enabled on-skin input techniques [9, 8], the
ring form factor makes it easy to adjust camera orientations

to enable more applications. Combined with easily made and
deployed ThermalTags, ThermalRing can satisfy various types
of input demands in smart spaces.

We built a proof-of-concept ThermalRing using MLX90640
thermal sensor array with a 32x24 low resolution1. With this
prototype, we focus our discussion on smart device remote
control tasks and demonstrate three example application do-
mains: 1) Planar surface-based drawing gesture sensing for
smart device pairing; 2) Virtual button and slider input sens-
ing for smart device control; 3) ThermalTag identification for
instant smart device access.

In the first example domain, we propose a BoW (Bag-of-
Words) algorithm based six-step sensing pipeline for drawing
gesture recognition. Nine drawing gestures are selected to
represent commonly used devices in smart spaces. The results
of the user study show that our system achieves an overall clas-
sification accuracy of 90.9%. In the second example domain,
we implement a virtual user interface with two buttons and
one slider. The study results show that our system can detect
click events with an accuracy of 94.9%. It takes 7.57 seconds
on average for a participant to complete a sliding task cor-
rectly. In the third example domain, we propose inexpensive,
passive, and thin thermal-visible tags that can be easily made
and applied by end users. We optimize the sizes of the tags
and design a tag scan procedure for a quick scan experience.
We use Hu’s Moments [20] as learning features to differenti-
ate among six different ThermalTags and achieve an overall
accuracy of 95.0%. The results of subjective interviews show
that users are willing to wear ThermalRing for a more sponta-
neous and consistent input experience. At last, we show more
possible interactions to demonstrate ThermalRing’s potential
as a universal input device.

Our contributions are three-fold:

1. For the first time, we propose to use thermal imaging smart
ring as a spontaneous input device in smart spaces. Our
solution is identity-anonymous, illumination-invariant, and
power-efficient compared with rings equipped with regular
RGB cameras.

2. We implement a ThermalRing prototype, develop sensing
techniques for three example domains that achieve high
recognition accuracy, and conduct user study to validate our
system for each application domain.

3. We discuss more potential applications to illustrate the ver-
satility of ThermalRing as an input device in smart spaces.

BACKGROUND AND RELATED WORK
Thermal cameras capture the object emitted Long-wavelength
Infrared (LWIR, 8 to 15 µm wavelength) energy. RGB cam-
eras and Near Infrared (NIR) sensors, on the other hand, cap-
ture the object reflected visible light (400nm-700nm wave-
length) and NIR energy (750nm-1.4µm wavelength), respec-
tively2. In this section, we first compare thermal cameras

1https://www.melexis.com/en/product/MLX90640/Far-Infrared-
Thermal-Sensor-Array
2https://en.wikipedia.org/wiki/Infrared
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with RGB cameras and NIR sensors when integrated on smart
wearables, then review works on thermal imaging based inter-
actions, and at last look at related works on tag-based interac-
tions.

Smart Wearables with RGB Cameras and NIR Sensors
Small and low-cost RGB cameras can be integrated into smart
wearables for interaction purposes. The advanced Computer
Vision techniques enable RGB cameras to recognize gestures,
objects, and contexts. CyclopsRing [4] and EyeRing [24]
integrate RGB camera into a ring to recognize input gestures
and objects in the surrounding area. MagicFinger [36] uses
RGB camera to sense different textures for context detection.
One major drawback of RGB camera based wearables are that
they can severely infringe user privacy. Also, RGB cameras’
sensing performance can vary significantly under different
illumination conditions since they only detect reflected energy.

The sizes of NIR transmitters and receivers are also small,
which makes them suitable for wearables integration. Sen-
sIR [19] and Novest [11] emit NIR signal from a wristband and
detect the reflected signal to recognize hand gestures and local-
ize fingertips on the hand back respectively. WaveSense [34]
detects in-air gestures by IR arrays on the back of HMD de-
vices. iRing uses an IR transceiver looking onto the finger skin
to detect single hand gestures like finger rotations [26]. Com-
bining NIR sensors with RGB cameras can improve recogni-
tion performance. For example, PalmGesture [32] uses a wrist
wearable composed of an NIR transceiver and a micro-camera
for stroking gesture recognition on the palm. The generation
of NIR signal increases the power consumption though. The
number of NIR transmitters and receivers are thus limited due
to the power and size constrains of smart wearables. The low
resolution leads to a limited gesture set that can be recognized
by NIR-based smart wearables.

The 32x24 thermal camera resolution enables ThermalRing
to detect more gestures while ensuring user anonymity. The
thermal camera is also illumination-invariant, which can be
used in more scenarios. Thermal cameras capture the hand
emitted LWIR energy for gesture sensing, which is more power
efficient than NIR sensing systems which require extra signal
emitters. The temperature differences between human hand
and background objects also leads to an easier separation of
the recognition target and the background.

Thermal Imaging Enabled Interactions
Researchers have explored high-resolution thermal cameras
in the environment for interaction purposes. For example,
ThermoTablet [12] senses object-based inputs on a surface by
monitoring its temperature distribution using a bottom-view
thermal camera. HeatWave uses a top-view high resolution
thermal camera to sense the heat residues after finger touches
for touch positions and pressures detection [16]. The set-up
thermal cameras can only support interactions on specific sur-
faces. Sahami et al. expands the thermal camera’s field of view
by leveraging the reflected heat from smooth surfaces [29],
and demonstrates the technique’s application for interactions
using hand-held projectors. The high resolution thermal cam-

eras are usually large and expensive, which are difficult to
integrate into wearable devices.

The passive infrared (PIR) motion sensor is widely used to
detect human presence. In essence, PIR sensors can be viewed
as thermal cameras with only one pixel. Pyro [5] integrate
PIR sensors onto a smart glass and a smart watch to recognize
thumb-index finger micro-gestures. PIR sensor arrays are
shown to be able to detect simple gestures [35, 3]. The sensing
ability of PIR sensors are limited though due to their passive
nature.

The ring-form of ThermalRing support gesture input on any
surfaces, which enables a more spontaneous interaction expe-
rience in smart spaces. The dexterity of fingers also enables
more interaction possibilities than sensing devices worn on
the wrists or heads. ThermalRing can also recognize a much
larger gesture set than that of PIR sensors, which is important
for an input device in smart spaces.

Tag-based Interactions
Various types of interactive tags have been used as ubiquitous
interactive interfaces to bridge the gap between the physical
and virtual world [33]. One widely used optical tag is barcode.
Users can scan a barcode using smart phone camera to retrieve
its information [28, 21]. Bokode is a small optical tag that
can be detected by phone cameras from a distance of up to
2m [22]. Instead of power-heavy cameras, acoustic tags only
require high frequency IMU or microphones for sensing pur-
poses. ViBand [15] shows that information can be extracted by
touching a vibrating transducer with fingertips. The transducer
needs to be powered up by batteries though. Acoustic Bar-
code [10] enables information extraction by sliding fingernails
on the barcode surface. RFID are popular electromagnetic tags
due to their passive nature, thin form factor, and extreme low
cost. When applied on everyday objects, RFID tags can be
used to sense a variety of input gestures [30, 18, 17, 27]. Users
can also customize RFID tags to DIY binary sensors [38].
Large and expensive RFID readers need to be installed inside
the room to interrogate the passive tags though, which limits
their applications.

ThermalTags can be easily made from widely available mate-
rials. They are also passive and thin so that users can deploy
them on everyday surfaces without any further maintenance.
Instead of advanced computing devices like RFID readers,
only a low-resolution wearable thermal camera is required
for interaction. ThermalTags also enable intuitive interactions
since their shapes can be visually interpreted by users (e.g. a
heart shape means ’Favorite’ operation), which creates a more
certain interaction experience.

THERMALRING

Hardware Implementation
Our current implementation of ThermalRing uses a
MLX90640 thermal camera (40 USD) module for thermal
imaging. The module consists of a thermal camera and a
STM32F103 microcontroller. The thermal camera is chosen
because of its wide Field of View (110o×75o) for gesture cap-
ture, low resolution (32×24) for user privacy, as well as small
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Figure 2. a) Current prototype; b) Raw temperature data; c) Scaled and
filtered image; d) After Otsu thresholding and contour filtering.

size (6mm height with a diameter of 8mm) and low power
consumption (20mA typical) for ring integration. An AirPod
earphone battery (93mWh, 4mm diameter3) will last more
than one day assuming one-hour usage time. We set the frame
rate to 8Hz, which does not change under different illumina-
tions. The microcontroller reads frame data from the camera
via I2C and calculates temperature on-chip. The data is then
sent to a PC (Core i7 8700@3.2GHz CPU, 16GB RAM) via a
serial port. A 3D printed case is used to hold the module and
worn on the user’s index finger (Figure 2a). The current ring
size is 25mm x 15mm x 5mm with a camera height of 8mm.

This prototype is designed for concept validation only. We
imagine future implementation integrated with an IMU for
purposes like activation, mode switch, and single ring based
bimanual gesture recognition. The ring can either classify
gestures on-chip or stream data to smartphones for recognition.
A higher frame-rate and resolution could benefit recognition
accuracy and enable more applications (e.g. tracking heat
traces on a table [16]), albeit require more computing resources
and power.

Thermal Image Preprocessing
The temperature data from the camera module needs to be
preprocessed. First, the temperature data is assembled into
a 32x24 image array (Figure 2b). To reduce the impact of
nearby heat sources and reflected heat from the desktop for a
cleaner hand silhouette, all pixels with temperatures below 0.8
of the image’s maximal temperature is set to 0. The image is
then max-min scaled to 0-255 (Figure 2c). Otsu thresholding
is then employed to generate a binarized image. At last, only
the contour with the largest connected area is kept, which is
assumed to be the interacting hand (Figure 2d).

ThermalRing can enable a wide variety of interactions thanks
to the dexterity of human fingers. In the following three sec-
tions, we describe ThermalRing as an input device in three
distinct example domains. For each example domain, we first

3https://en.wikipedia.org/wiki/AirPods

describe the input method, then explain the sensing algorithm,
and at last conduct a user study to validate the input technique.

EXAMPLE DOMAIN 1: DRAWING GESTURE SENSING

Interaction Design
ThermalRing can recognize a user’s drawing gestures on a
flat surface in an asymmetrical bimanual interaction setup
(Figure 1a). This allows the user to pair and interact with
different smart devices remotely via gestures. Specifically, the
user places the auxiliary hand on any surface, palm down and
stretching the index finger and thumb in orthogonal directions.
The index finger and thumb together indicate the interaction
area (similar to Imaginary Interfaces [7]). During interaction,
the user first uses the index finger of the interacting hand to
perform drawing gestures. A gesture starts when the finger
touches down on the surface and ends when the finger is lifted
up.

Such asymmetrical bimanual interaction is used for three rea-
sons. 1) Asymmetrical bimanual interaction is in line with
many common user activities and feels natural. For example,
a user usually need to anchor a paper using the auxiliary hand
first, then write on it using the interacting hand; 2) By allowing
the user to naturally place the entire interacting hand on the
surface, such interaction requires less physical efforts com-
pared with mid-air interactions and capacitive touch panels;
3) Users can better locate imaginary UI elements and interact
within the recommended area by referring the auxiliary hand.
As Guiard [6] stated in his Right-to-Left Spatial Reference
principle, “motion of the right hand typically finds its spatial
references in the results of the motion of the left”.

Sensing Algorithm
The recognition of drawing gestures consists of six steps (Al-
gorithm 1):

Fingertip Extraction
Based on the binarized side-view thermal image, the convex
hull of the interacting hand is calculated and the point with
the largest horizontal pixel coordinate is designated as the
fingertip (Figure 3b, Point F).

Finger Lift Detection
The finger lift status is detected based on the slope of Line
WF (Point W being the lower intercept point of wrist and a
image boundary, Figure 3b). If the slope is smaller than a
preset threshold, the finger is recognized as touched down.
Otherwise, it is recognized as lifted up.

X/Y Coordinates Estimation
As shown in Figure 3a, the fingertip moves on the x-y plane
while the imaged captured by ThermalRing is only hand pro-
jection on the y-z plane. The y coordinate can be easily calcu-
lated by scaling the y-axis pixel position of Point F (Figure 3b).
For x coordinate estimation, we calculate the distance D be-
tween the camera focal point and the hand using triangular
similarity principle. The perceived focal length FL can be
calculated by

FL = (Hreal×D)/H (1)
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Figure 3. a) x coordinate estimation; b) Finger lift status detection; c) The check and Graffiti ’A’ gestures have the same stroke angles; d)Two example
feature vectors for gesture ’AC’ and ’TV’.;

in which H is the pixel height of the hand in the thermal image,
and Hreal is the actual height of the hand. Since FL and Hreal
are fixed, we get D ∝ 1/H. Since we only need to estimate
the fingertip’s position on the x-axis when it is touched down,
H is calculated as the largest distance between a point on the
hand contour to Line FW (aligned with the hand bottom when
the fingertip touched down).

Kalman Filtering
The estimated x and y coordinates is not accurate since the
thermal image is distorted and can be noisy. So we imple-
mented a Kalman filter (P = 1000, R = 5, Q is modeled as
gaussian white noises with a variance of 0.5, empirically de-
cided) to smooth the estimated fingertip position on the x-y
plane.

BoW based Feature Extraction
Note that the absolute position on the x-axis is unknown using
the above estimation method. So we only leverage the finger
movement angles and amplitudes to recognize gestures. We
divide 0 to 360 degrees equally into 12 angel ranges, each
represented by a word in the BoW model [1]. The fingertip
movement direction between consecutive frames can be cal-
culated by θ = arctan(∆y

∆x ). The word count increases by 1 if
θ falls into the angle range of the word. To capture the travel
distance along different angels, the movement amplitude is
also summed and normalized for each angle range. Some
gestures might have the same overall movement angles (e.g. a
check and a Graffiti ’A’ shown in Figure 3c). To differentiate
between such gestures, we extract angle and amplitude his-
togram features separately for the first half and the second half
of the gesture drawing period. The size of each feature vector
is then 48. Two example gestures are shown in Figure 3d.

SVM Prediction
The extracted feature is fed into a SVM model (rbf kernel,
C=1) for training or prediction.

User Study 1
Study Design and Procedure
We conducted a user study to validate our drawing gesture
sensing algorithm. We recruited 8 participants (4 males) with
ages ranging from 23 to 30 (MEAN=23.9, SD=2.31) from the
local institution. The study lasts for about 1 hour and each
participant was compensated with 20 USD. We chose nine
drawing gestures that could be used in a smart home pairing
scenario: 1) ’AC’ for Air-Conditioner; 2) ’TV’ for Television;

Algorithm 1 Drawing Gesture Classification Algorithm
while image do

Pos f t = f indFingertip(image)
if TouchDown(Pos f t) then . 1st touch down

kalmanFilter = initKF()
hist f t = initHist()

end if
if isTouchDown(Pos f t) then . touched down

x f t ,y f t = coordCal(Pos f t)
x f t ,y f t = kalmanSmooth(kalmanFilter,x f t ,y f t)
∆x f t = x f t − xPrev f t , ∆y f t = y f t − yPrev f t
θ = arctan(∆y/∆x)
r =

√
∆x2 +∆y2

hist f t = BOW (hist f t ,θ ,r)
xPrev f t = x f t , yPrev f t = y f t

end if
if Li f tU p(Pos f t) then . lift up after touch down

gesture = svmPredict(hist f t)
end if

end while

3) ’A’ for Alexa; 4) ’T’ for Telephone; 5) ’L1’ for Light1 ;
6) ’L2’ for Light2; 7) ’P’ for Printer; 8) ’K’ for Kettle; 9)
’Backspace’ for disconnection. We asked the participants to
follow the Graffiti gestures [2] and write each letter on top of
each other for multi-letter gestures like ’AC’ (Figure 4b).

After the participant arrived, we first explained the sensing
principles of ThermalRing and the interaction paradigm. Due
to the limited frame rate of the thermal camera, we reminded
each participant to spend at least one second writing each
character. Then the participant warmed up for 5 minutes. The
study contained three sessions, each with nine blocks. Each
block corresponded to one drawing gesture. Within each block,
the participant performed 20 trials of the gestures, then rested
for 30 seconds. The gesture sequence was randomized within
each session. Between each session, we asked the participant
to take down the ring, stand up, and walk around for one
minute. We measured the hand temperature of the participant
using Non-contact Infrared thermometer at the start and end
of each session. At last, we interviewed the participant to
understand his/her subjective feelings for the technique and
using smart rings as an input device in general (5 point Likert
scale, the higher the better).
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Figure 4. a) Experiment setup; b) Gesture set used in the study; c) Aver-
aged within-user confusion matrix; d) Averaged between-user confusion
matrix.

Study Results
A total of 9 gestures× 6 participants× 3 sessions× 20 trials =
3240 drawing gesture trials are collected, 360 for each gesture
type. The hand temperatures of participants range from 35.9◦C
to 36.7◦C (MEAN = 36.3, SD = 0.23). The maximal hand tem-
perature variations within a session is 0.2 ◦C and 0.5 ◦C during
the whole study for all participants. The overall classification
accuracy is 90.9% with 3-fold cross validation. Within-user
classification accuracy uses the data collected from the same
participant for both training and testing. For each participant,
70% of the trails are randomly selected for training and the
rest for testing. We average the within-user accuracies for all
participants, and show the results in Figure 4c. The overall
within-user accuracy is 89.2% (SD = 0.04). Between-user
classification accuracy is calculated by using data collected
from five participants for training and the rest one for test-
ing. The overall between-user accuracy averaged across all
participants is 85.7% (SD = 0.06). The lower between-user
confusion is expected since different users may draw the same
gesture with different rhythms and timings. Another possible
reason is that the participant’s hand can drift outside of the sug-
gested interaction area. The drawing area was determined by
each participant based on the thumb and index finger position.
This may cause variations in calculated angles for the same
gesture, which leads to deteriorated recognition performance
among gestures with similar drawing strokes like ’L1’, ’L2’
and ’P’. We believe a thermal camera with higher frame rate
can capture more details of the drawing gestures, thus able
to better differentiate such gestures. The averaged processing
time between two consecutive frames is 30.6ms, which is fast
enough to capture the gesture movements in the study.

All participants are willing to wear one smart ring for smart
home remote control (MEDIAN=5, MODE=5) and smart de-
vice quick access (MEDIAN=4, MODE=4) purposes. If they
are already wearing a ring, all participants are willing to use it

for interaction purposes (MEDIAN=5, MODE=5) for a conve-
nient and spontaneous input experience. All participants do
not mind rotating the ring for different interactions since it is
quite easy (MEDIAN=5, MODE=5). For the drawing gesture
interaction technique, all participants rate the interaction as
comfortable (MEDIAN=4, MODE=4) and convenient (ME-
DIAN=4.5, MODE=4). They are neutral on the input speed
though (MEDIAN=3, MODE=3). The input speed can be
improved by using a camera with higher frame rate.

EXAMPLE DOMAIN 2: CLICK AND SLIDE GESTURE
SENSING

Interaction Design
After paired with the target device, it is more convenient to
continue control the devices with the same bimanual setup by
manipulating virtual buttons and sliders in the interaction area
via click and slide gestures. The user can refer to the locations
and visual features of the auxiliary hand’s thumb and index
finger to localize virtual UI elements. Figure 5a shows an
virtual interface with two buttons and one slider.

Sensing Algorithm
As mentioned above, the finger lift status can be detected by
monitoring the slope between index fingertip and the wrist.
So a click gesture can be detected when the fingertip briefly
touches down and then lifts up within a threshold duration
(T Ht = 1.5second). A slide gesture is recognized if the finger-
tip touches down for longer than T Ht . UI elements at different
locations in the interaction area can be separated by the esti-
mated x and y coordinates. A calibration process is required
when there are multiple UI elements at different x positions.
Before each control session, users perform calibration by a
simple click gesture with interacting hand placed right next to
the stretched thumb of the auxiliary hand. The pixel height of
the hand is then recorded. UI elements at different x positions
can then be differentiated by the ratio of the current pixel hand
height to the calibrate pixel hand height value.

User Study 2
Study Design and Procedure
We conducted this study to validate the usability of the virtual
UI interface. More specifically, we want to know whether our
technique can robustly detect finger click gestures and slide
gestures. We evaluated a UI interface with two virtual buttons
(one close to the auxiliary hand, the other is farther away)
and one slider with 5 scales. The layout of UI elements was
invisible to users. Only recognition results were shown on the
screen (Figure 5b). We recruited 8 participants (4 males) with
ages ranging from 23 to 30 (MEAN = 24.3, SD = 2.38) from
the local institution. The study lasted for about 20 minutes,
and each participant was compensated with 15 USD.

We first explained the input method and sensing principles to
the participant. Then the participant warmed up for 2 minutes.
The study contained three sessions. At the beginning of each
session, the participant calibrated the hand height by click the
index finger once. The participant then clicked each button 16
times and adjusted the slider 8 times (2 times for each level).
The clicked button and slider level was displayed on a monitor
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Figure 5. a) The virtual sliders and buttons; b) Experiment interface

for reference. A 20 seconds timeout was enforced between
tasks. The task sequence was randomized for each session.
The participant rested for one minute between sessions. We
measured the hand temperature of the participant using Non-
contact Infrared thermometer at the start and end of each
session. At last, the participant finished a questionnaire on a
5-point Likert Scale (the higher the better).

Study Results
A total of 8 participants × 2 buttons × 16 clicks × 3 sessions
= 768 click gestures and 8 participants × 1 slider × 8 slides
× 3 sessions = 192 slide gestures were collected. The hand
temperatures of participants ranged from 36.1◦C to 36.7◦C
(MEAN = 36.3, SD = 0.18). The maximal variations of hand
temperatures within the study is 0.2 ◦C with data from all par-
ticipants. The overall button click detection accuracy is 94.9%
(SD=0.02). Some participants mentioned that sometimes they
did not follow the instruction correctly, which account for
some of the errors. All but one slider task were successfully
finished before timeout. On average, it took the participants
7.57 seconds to finish slider adjustment tasks. Our technique
requires a touch down duration of 1.5 second to avoid false
positives of sliding gestures. One-way ANOVA does not show
significant differences of button click recognition accuracies
(F1,7 = 2.35, p = .12) or slide time (F1,7 = 0.50, p = .61) be-
tween sessions.

On average, the participants felt they can reliably locate 4
buttons (SD = 1) and 2 sliders (SD = 0.71) at most within the
recommended interaction area. All participants felt it easy to
locate the two buttons in this study (MEDIAN = 5, MODE =
5), the interactions were precise (MEDIAN = 5, MODE = 5)
and not tiring (MEDIAN = 5, MODE = 5).

EXAMPLE DOMAIN 3: THERMALTAG IDENTIFICATION

Principle and Interaction Design
Thermal cameras can identify materials with different heat
reflectivity [29]. We leverage this nature and propose
ThermalTag-thin and passive tags made of high heat reflection
materials and applied on surfaces with lower heat reflectivity.
When close to human hand, the tag reflects the heat from the
hand and form contrast on the thermal image between the tag
and the surface. The thermal image can then be processed to
recognize the tag shape.

In this application, the tags with different shapes (e.g. triangle
for ’Play’, rectangle for ’Stop’) are applied on surfaces of
various objects. For example, users can apply tags on a desk
for TV control, on a wall for AC control, or even on a cup

handle for lights control. One advantage of ThermalRing is
that such tags can even be embedded inside a surface since
ThermalRing is robust under different illumination conditions.
Users can easily make such tags by cutting widely available
materials like aluminum foil or tapes (Figure 6a).

Users can scan tags on various surfaces through a two step
process(Figure 6b). The first step is to align ThermalRing
with the tag to capture a complete tag image. However, this
could be challenging when the ring camera points downward
and the tag is blocked by the hand. The second step is to hold
ThermalRing at a distance from the tag to capture a complete
tag image. To enable an easier and faster scan experience, we
designed a two-step tag scan procedure: 1) Touch the camera
on the tag to ensure precise alignment; 2) Lift the hand and
keep it at a distance from the tag to take a complete picture.

The size of the tag needs to be carefully designed. For smaller
tags, a close distance between the camera and the tag is needed
for a complete and clear image due to the camera’s low resolu-
tion. This requires precise tag alignment using the finger-worn
camera, which can be difficult for users. It is easier to align
with bigger tags since the imaging distance can be larger. How-
ever, there will be less heat radiated by the hand reflected by
the tag as the camera (thus the hand) moves farther away,
thus parts or all of the tag may not be ’illuminated’. We con-
ducted a pilot study to find the tag size that enables better scan
experience.

Sensing Algorithm
For a more natural scan experience, users should be able to
approach the tag from different angles and keep the camera
at different distances above the tag, as long as a clean and
complete image can be captured. The Hu’s Moments [20]
are used as learning features since they are translation, scale,
and rotation invariant shape descriptors. When the camera
touches on the tag, most pixels of the image should be high
temperature due to camera’s self-heat. So the start of the scan
can be detected when the bounding rectangle of the largest
contour fills more than 70% (area ratio) of the image. When
the hand moves away from the tag, the area ratio decreases
until the user holds the hand still for image capture. The end
of the scan is then detected when the standard deviation of the
area ratio is less than 0.02 (decided in the pilot study). To en-
sure a complete image is captured, the edges of the contour’s
bounding rectangle should not reside on any image bound-
aries. The Hu’s Moments of the bounded image area is then
calculated and log-transformed for a comparable magnitude.
The features are then fed into a RandomForest classifier (1500
estimators) for prediction. The sensing flow chart is shown in
Figure 6c.

Pilot Study
We conducted a pilot study to determine the tag sizes used
for the later study. To understand the tag-camera distance
ranges for tags with different sizes, we made the Search tag
with three different sizes-8mm, 15mm, 20mm height. The
’Search’ tag is chosen for its rich shape features. The minimal
distance is set when a complete image fills 90% of the image,
and the maximal distance is set when the search tag cannot
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Figure 6. a) ThermalTags can be fabricated by cutting aluminum tap; b) Study 3 Experiment Setup; c) ThermalTag identification algorithm flow chart;
d) Camera-tag distances for the ’Search’ tag with 8mm, 15mm and 20mm heights; e) ThermalTags used in the study and their corresponding example
scan image.

be distinguished from a circle anymore. In general, larger
tags requires a greater camera-tag distance to form a complete
tag image. They also work within a larger range of distances,
which can better account for variances among different scans
(Figure 6d). During the study, we found that the heat from one
hand is enough to ’illuminate’ the entire tag for small tags. Due
to the larger distance between the hand and the tag, the heat
from the hand is not enough to ’illuminate’ the entire 20mm
tag though. The incomplete image can impact tag recognition
accuracies. For an easier and faster scan experience, we choose
a tag size of 20mm and add one step to the scan process. When
the camera touches the tag, put both hands together and then
lift hands. The heat from two hands ensures a complete tag
imaging.

User Study 3

Study Design and Procedure
To validate our sensing algorithm, we conducted another user
study. We made six ThermalTags from aluminum tapes with
different shapes: 1) Play, a triangle; 2) Stop, a square; 3)
Search, a magnifier; 4) Help, a question mark; 5) Up, a plus
sign; 6) Down, a minus sign. Their shapes and the corre-
sponding binarized thermal image are shown in Figure 6e.
They were placed on a white PVC plastic sheet with 70mm
separation between each other. We recruited 8 participants
(4 females) with ages ranging from 23 to 30 (MEAN = 24.3,
SD = 2.38). The study lasted for about 30 minutes and each
participant was compensated for 12 USD.

The participant sat on a chair with the tags placed around 20cm
(within arm reach) on the desk. We first explained the sensing
principles to the participant. Then the participant warmed up
for 5 minutes to get familiar with the scan procedure. The
study contained two sessions, each with six blocks. In each
block, the participant scanned one tag for 20 times, then rested
for 30 seconds. The order of the block sequence was random-
ized within each session. We also recorded the scanning time
for each trial. Similar to Study 1, we asked the participant to
take down the ring, stand up, and walk around for 1 minute
between sessions. After the study, we asked the participants

Figure 7. a) Within-user classification confusion matrix; b) Between-
user classification confusion matrix.

to rate the physical, mental, and temporal effort of the scan
operation using a 5-point Likert scale (higher score indicates
lower efforts).

Study Results
A total of 8 participants × 2 sessions × 6 tags × 20 trials =
1920 scans were collected, 320 for each tag. The hand temper-
atures of participants range from 36.1◦C to 36.4◦C (MEAN
= 36.1, SD = 0.15). The maximal variations of hand temper-
atures within the study is 0.5 ◦C across all participants. The
detection accuracy using a 3-fold cross validation is 95%. The
averaged within-in user sensing accuracy is 95.0% (SD = 0.04,
Figure 7a) while the averaged between-user sensing accuracy
is 90.1% (SD = 0.08, Figure 7b). The difference is due to that
different participants scanned the tag by approaching from
different angles at slightly different tag-camera distances. The
confusion rate is high between the ’Help’ and ’Search’ tag for
between-user validation (13.2%). One reason could be that
when the distance is large (e.g. close to 60mm), the shapes
of the two tags become small and similar, thus are difficult to
be separated using Hu’s Moments. The sensing performance
can be improved if user scan the tag with a recommended
distance (e.g. 30mm) or a camera with higher resolution is
used. Advanced shape descriptors (e.g. shape context [23])
can be used to identify more complex shapes. The averaged
scan time is 3.5 seconds, which shows that ThermalTag can
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Figure 8. a) Drop a curtain on a desktop; b) Start music on a chair arm; c) Navigate slides from a whiteboard; d) Turn on lights while pushing a door
open;

provide a free and instant scan experience. In general, the
participants felt that the scan interaction did not require high
physical (MEDIAN = 4, MODE = 4) and mental (MEDIAN =
4, MODE = 4) efforts. They also felt the scan is fast enough
for quick access tasks (MEDIAN = 4, MODE = 4).

APPLICATION SCENARIOS

Smart Curtain Control on a Table
ThermalRing enables easy control of a smart curtain from any
surface in a natural, spontaneous, and intuitive way (Figure 8a).
For example, the user can write ’CT’ to pair with the curtain,
then perform a down sliding gesture to drop the curtain. A up
sliding gesture would rise the curtain.

Smart Speaker Control on a Chair
ThermalRing works even on a small surface like a chair arm-
rest (Figure 8b). While sitting on a chair, the user can write a
’K’ to pair with a nearby music player, click a button to turn
on the speaker, then slide to adjust volume. Users can keep
interacting with the music player. For example, users can draw
a heart shape to add the current song to the favorite list.

Slides Navigation on Whiteboard
ThermalTag enables users to add control functions to existing
objects in an easy and spontaneous way (Figure 8c). For
example, the user can make and apply ThermalTags on a
whiteboard to navigate the projected presentation slides.

Smart Light Control on a Door
The scanning of ThermalTag can be combined with the exist-
ing interaction gestures for an implicit interaction experience
(Figure 8d). For example, a ThermalTag can be applied on a
door. The user can scan the ThermalTag while pushing the
door open to turn on the lights inside the door.

DISCUSSION AND LIMITATIONS

Robustness
In this paper, we filtered out pixels with low temperatures to
mitigate impacts from nearby heat sources and reflections. An
absolute temperature upper bound can also be set to further fil-
ter other heat sources in the environment. Background removal
techniques can be leveraged to further improve robustness to
interferences.

ThermalRing can robustly localize the index fingertip between
4cm to 32cm away from the ring, which is sufficient for appli-
cations discussed in this paper. Thermal imaging also works

as long as enough hand heat radiates through the occlusion
(e.g. a thin cotton glove).

Heat can be reflected by specular surfaces (e.g. glass) and
blocked by curved surfaces (e.g. lap). For specular surfaces,
we can leverage the formed symmetric image due to heat
reflection for hand segmentation, and only keep the upper part
of the image. The surface curvatures can block the imaging of
index fingertip, which leads to inaccurate fingertip localization.
One possible solution is using hand models to reconstruct
the blocked image and extrapolate to estimate the blocked
fingertip position.

Since ThermalRing is mainly intended for interactions in smart
spaces, we only conducted indoor lab controlled evaluations
in this paper. In-the-wild and outdoor studies are still valuable
to fully evaluate ThermalRing’s robustness as a final product.

Mode Switch and Feedback
Thanks to the flexibility of fingers, ThermalRing can support
various applications by rotating the ring or wearing the ring on
different fingers. A mode switch mechanism is thus necessary
for such a multi-functional input device, since different tasks
may require different sensing pipelines. We imagine shaking
(with IMU) and pressing (with buttons) the ring as two prac-
tical ways to iterate through modes. ThermalRing can also
switch modes by recognizing current gestures. For example,
double taps on the camera can iterate through different modes;
closing the thumb to cover the camera for several seconds can
put the camera into sleep mode to save power; a three seconds
spreading the interacting hand could start the handwriting in-
put mode; a three seconds thumb-index finger pinch could
start the virtual UI mode.

Visual and haptic feedback can enable a more certain inter-
action experience. For example, an LED can single blink for
three seconds when successfully paired with a smart device,
and double blink when the smart device refuses the connection
request. Different vibration patterns can indicate the current
mode and remind users when the fingertip moved outside of
the interaction area.

Discreet and One-handed Interaction
Bimanual interactions discussed in our paper are less likely
intended to be discreet. That being said, users can still place
one hand on each leg to interact on-lap. Aside from the bi-
manual gestures discussed in this paper, ThermalRing can
also recognize single-hand gestures. For example, the camera
can capture thumb tap, swipe, and finger pinches [4]. Thanks
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Figure 9. a) ThermalTag enabled slider; b) Thermal image of a ’Rock&Roll’ gesture; c) Thermal image of a tape on the palm; d) Thermal image when
holding a pen.

to ThermalRing’s illumination-invariant imaging, users can
perform such gestures inside a pocket or a bag, which leads to
a discreet interaction experience. ThermalRing can also scan
tags at discreet places (e.g. on the bottom side of a table) with
proper haptic designs that help alignments.

FUTURE WORK
Aside from the three example domains, ThermalRing can en-
able more interaction possibilities. We believe the following
four domains are particularly interesting for further explo-
ration:

ThermalTag-based UI Elements Our technique allows
users to scan thin passive tags in close proximity. However,
scan distances and angles can impact the recognition
accuracy. 3D printed tag cases and rails can enforce a fixed
scan angle and distance, which will improve the sensing
performance. Figure 9a shows a slider ThermalTag with a
3D printed rail.

In-air Gesture Recognition The on-surface interaction can
provide tactile feedback for a more precise and certain input
experience. ThermalRing can also enable less precise but
more spontaneous in-air interactions. For example, a user
can perform a ’Rock&Roll’ gesture to start playing music
(Figure 9b).

Everyday Object Recognition The temperature of the ob-
ject can either be higher or lower than that of the back-
ground for thermal imaging based recognition. Aside from
radiating or reflecting heat, an object can be imaged if it
blocks the heat (e.g. from a human body). Figure 9c shows
that the tape can be clearly imaged when placed on the
palm.

Context-aware Interactions ThermalRing can also detect
current contexts based on the number, shape, and relative
locations of the heat sources, either by adjusting the ring’s
orientation or in an opportunistic manner. After the context
is detected (e.g. typing, drawing with a stylus), users can
perform single hand gesture to facilitate the current task.
For example, when a typing scenario is detected, the users
can swipe thumb on the ring to switch modes; when a stylus
drawing scenario is detected (Figure 9d), users can tap on
the ring to change color.

CONCLUSION
In this paper, we introduced ThermalRing to enable rich, con-
sistent, and spontaneous interactions in smart spaces. Our

minimal-viable prototype uses small, low-resolution, low-
power thermal sensor arrays camera, which can fit into a ring
for identity-anonymous imaging. We discussed three exam-
ple input techniques, described their sensing algorithms, and
conducted studies for validation. The first example domain is
recognizing drawing gestures for smart device pairing tasks.
We implemented a BoW-based six-step sensing pipeline and
validated that it can recognize nine drawing gestures with a
within-user accuracy of 89.2% and between-user accuracy of
85.7%. The second example domain is recognizing click and
slide gestures on a virtual UI interface. We implemented a vir-
tual UI of two buttons and one slider and validated that users
can click the buttons with an accuracy of 94.9%. It took 7.57
seconds on average to finish a control task for a 5 level slider.
In the third example domain, we introduced ThermalTag, thin
and passive tags that can be imaged by thermal cameras. Our
system can correctly classify 6 ThermalTags with an accuracy
of 95.0% while allowing a free and natural scanning process.
In the end, we demonstrated more applications that are sup-
ported by the proposed input techniques, as well as those that
can be enabled by ThermalRing in the future.
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