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ABSTRACT
Recent advances in ultra-low-power ubiquitous touch interfaces
make touch inputs possible anytime, anywhere. However, their
functions are usually pre-determined, i.e., one button is only asso-
ciated with one fixed function. BoldMove enables spontaneous and
efficient association of touch inputs and IoT device functions with
semantic-based function filtering and a wait-confirm sequential
selection strategy. In this way, such touch interfaces become ubiq-
uitous IoT device controllers. We proposed the semantic-based IoT
function filtering to improve control efficiency, then designed the se-
quential selection mechanism for interfaces with constrained input
and output resources. We implemented BoldMove on a custom-built
touch interface with capacitive button inputs and a smartwatch
display. We then conducted a user study to determine the design pa-
rameters for the sequential selection method. At last, we validated
that BoldMove only takes 3.25 seconds to complete a selection task
if the target function appears within the Top-3 displayed item. Even
if the assumption is relaxed to Top-10, BoldMove is still estimated
to be more efficient than the conventional selection method with
device-based filtering and menu-navigated selection.
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1 BACKGROUND AND INTRODUCTION
Ubiquitous deployed interfaces enable users to interact with the
digital world anytime, anywhere. Users can click or slide on various
surfaces for input, such as objects [7, 11, 16–18], hands [15, 19], and
fingers [8, 9]. Recent advances in ultra-low-power touch interfaces
reduce the power consumption to several milli-Watts [13] and even
micro-Watts[1]. Such extremely low power consumption enables
them to be continuously powered by ambient energy sources (e.g.,
in-door light, radio waves), thus eliminating energy maintenance
efforts and being suitable for ubiquitous deployment. Compared
with voice control interfaces, controlling IoT devices using ubiqui-
tous touch interfaces is subtler and more privacy-preserving. This is
especially true under scenarios when voice commands are intrusive,
socially awkward, or privacy-invasive.

However, such ubiquitous touch interfaces only support input
from a few buttons due to power and cost constraints. For exam-
ple, a single passive BitID [16] sensor only supports button-like
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Figure 1: The mapping of three semantics (a) and their cor-
responding interaction design for Toggle (b), Switch (c), and
Adjust (d).

binary inputs. The functions of such buttons are usually fixed to
control particularly pre-determined objects like light bulbs. Also,
they either use a local screen with a low resolution and refresh rate
(e.g., E-ink [21]) or reuse a remote display of a nearby device (e.g.,
smartwatch screen) to save power. The limited input and output
make it exceptionally inefficient to control multiple different IoT
devices on such interfaces: The small and slow screen can only
display one or two functions simultaneously. To make it worse,
the input lag of simple buttons reduces the interaction efficiency,
especially when users need to navigate among IoT device functions
through many clicks.

To unleash the potential of the above mentioned ubiquitous in-
terfaces for IoT device control, we propose BoldMove, a ’one-click’
IoT device control method that enables spontaneous and efficient
control on resource-constrained touch interfaces. BoldMove first
filters IoT functions by mapping the semantics of both the function

and the touch widget, then adopts a wait-confirm sequential selec-
tion mechanism to select from the matching functions. Inspired
by Mayer et al. [10], we define three semantics in this paper (Fig-
ure 1a): Toggle, Switch, Adjust, which correspond to three categories
of functions: those that only have binary states (e.g., power on/off),
those have several discreet states (e.g., AC modes), and those have
continuous states (e.g., lamp brightness). Three simple touch wid-
gets can represent the semantics: a button to toggle, two arrow
buttons to switch, and a slider to adjust.

Figure 1 shows the control procedure. Users first express the
semantic by ’boldly’ pressing one of the three touch widgets before
any function is shown. Only functions matching the widget seman-
tic are displayed for further selection. The user holds the press to
display the remaining functions one after one on a small screen.
When the target function appears, the user either lifts (Figure 1b-c)
or starts sliding the finger (Figure 1d) to confirm the selection.

BoldMove achieves ’one-click’ IoT device control by trading spa-
tial movements to temporal dwells, which significantly reduces the
sensing resource demands of the interface. The ’one-click’ wait-
confirm selection strategy avoids input lags introduced by multiple
clicks, which can be large on ubiquitous touch interfaces. The ef-
ficiency of the wait-confirm selection is further improved by the
command-oriented [5] semantic-based function filtering, which
can be easily expressed with extremely limited input resources.
The traditional object-oriented device-based filtering (i.e., select
the device first, then select the target function), on the other hand,
require advanced hardware like IR transceivers, cameras [3], or
speakers/microphones [2] for device selection. They cannot be effi-
ciently input on such interfaces, which we will show in later studies.
Moreover, the interaction mechanism of BoldMove is also compat-
ible with the traditional interaction mechanism – ’multiple-click’
device control – with appropriate temporal threshold design, e.g.,
quick click for navigation/confirmation and long click for semantic
selection. As an initial exploration of this new technique, we first
focus on the ’one-click’ version of BoldMove in this paper.

We built a Bluetooth-compatible touch interface to validate the
concept. The touch interface encodes capacitive button inputs into
Bluetooth advertisements, which are received by a smartwatch
worn on the interacting hand. The smartwatch’s screen then dis-
plays functions based on the inputs. We built such a high-fidelity
prototype to mimic real ubiquitous interfaces. The input of such
interfaces usually lacks proper haptic feedback; the display is small
or shared with another device opportunistically; the lag between
input and display is large and noticeable. In this way, the results
of this paper can be readily generalized to other ubiquitous touch
interfaces with similar inputs and displays (e.g., E-ink screen).

We first explain the design of our touch interface prototype in
detail, then provide an analytical model of the sequential selection
time. We conduct a user study to determine the design parameters
of the sequential selection, which show that users prefer the target
item to appear within the Top 3 items with a 2 seconds item display
duration. We then evaluate the design under three scenarios of
IoT device control. We implement the traditional menu-navigated
selection method for a direct comparison despite not being suitable
for such resource-constrained interfaces. The results show that
BoldMove only took 3.25 seconds on average to select a function
if it appears within the first three displayed items. Without the
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assumption, BoldMove is estimated to take 5.25 seconds on average,
which is still much shorter than that of the conventional method
(10.22 seconds). Analytical time estimation shows that BoldMove
still outperforms the menu-navigated method as long as the target
function is within the first ten items. In the end, we discuss the
possibilities for BoldMove to scale for more functions and generalize
to more input modalities.

The contributions of the article can be summarized as follows:
(1) A novel IoT device control method that combines semantic-

based IoT function filtering with sequential selection to
achieve efficient and spontaneous control on resource-constrained
ubiquitous interfaces;

(2) A high-fidelity resource-constrained touch interface proto-
type system with capacitive touch buttons as inputs and a
commercial smartwatch screen as output;

(3) An analytical model to estimate sequential selection time
with respect to the appearance order of the target function;

(4) Two user studies to determine BoldMove design parameters
and validate its performance under different scenarios.

Together, theymake IoT device control possible on ubiquitous touch
interfaces.

2 TOUCH INTERFACE DESIGN AND
IMPLEMENTATION

We built a ubiquitous interface with capacitive touch inputs and a
smartwatch display. The input side consists of a Bluetooth transceiver
module (Ebyte E73-2G4M04S1B with an NRF52832 chip inside) and
copper-made touchpads. The touchpads are connected with the
analog input pins of the module for on-chip self-capacitive sensing.
In this way, they can be easily deployed on surfaces of different
objects. The Toggle semantic is mapped to a circular button, the
Switch semantics are mapped to two arrow buttons that point left
and right respectively, and the Adjust semantic is mapped to a 4-
element slider (see Figure 2). A CR2032 coin battery powers up
the whole interface. An average current of 0.3 mA is estimated
using the the Nordic Online Power Profiler1, which translates to a
working lifetime of 700 hours when using a 210mAh coin battery.

The module sends out Bluetooth advertisement packets every
20ms to communicate touch events with a commercial smartwatch.
The smartwatch continuously scans for the advertisement and de-
codes the touch status of each widget. The functions are matched
and displayed on the smartwatch screen accordingly. As an exam-
ple, we implement the display of our system using the screen of a
smartwatch in our prototype. Our touch interface can also be used
with other Bluetooth-compatible displays like TV, laptop, smart-
phone, and smart speaker screens. This makes the interface highly
flexible in terms of deployment locations and usage scenarios.

Aside from the 20ms advertisement interval, the self-capacitive
touch detection, the smartwatch processing and display refresh,
and the user’s reaction time of input confirmation from the display
changes will also introduce additional input lags. The input lag
would be even larger for low-power E-ink displays since the refresh
time is usually more than 400ms.

1https://devzone.nordicsemi.com/power/w/opp/2/online-power-profiler-for-
bluetooth-le

Figure 2: Our prototype touch interface uses a nRF52832
Bluetooth module and is powered by a CR2032 battery.

3 THEORETICAL ANALYSIS FOR
SEQUENTIAL SELECTION TIME

The sequential selection time consists of hold time (i.e., waiting
for the target function to appear) and reaction time (i.e., selecting
the function when it appears). The system determines the hold
time (i.e., the appearance sequence) while the user determines the
reaction time. If the target appears at the ith item during a task,
the function selection time for the task is

Ti = td (i − 1) + tr (1)

in which td is the display duration for each item, and tr is the
reaction time.Wemake two assumptions: 1) tr does not changewith
i; 2) the target function will appear within the firstn displayed items
with an equal probability. Then the expectation of the selection
time is

E[T ] =
n∑
i=1

(i − 1)td
n

+ tr =
(n − 1)td

2
+ tr (2)

We can see the expected selection timewill increase by td/2
if n increase by one. It is possible to predict the probability dis-
tribution of the semantic-matching functions based on relevant
context (e.g., user orientation, location) and control history (e.g.,
previous task). The target function will then have a higher proba-
bility of appearing earlier. So the uniform probability distribution
assumption in Equation 2 makes the estimated time the upper
bound of the selection time, which indicates the selection time of
BoldMove is determined by td , tr , and n.

So we first conduct User Study 1 to determine the preferred td
and acceptable n and understand different configurations’ impacts
on tr . The study results show that users prefer the display duration
to be 2 seconds and the target function appears within the Top-
3 items. This configuration is validated in User Study 2, which
shows that BoldMove outperforms the conventional device-based
menu-navigated control method on our prototype interface.

4 USER STUDY 1
We design four simple control tasks for the study: 1. Turn on the TV;
2. Turn off all lights; 3. Switch to the next TV channel; 4. Decrease
the TV volume. The four tasks correspond to toggle one device,
toggle multiple devices, switch on one device, and adjust on one
device. We had two experimental settings: 1) The target function
will appear as the 1st , 3rd , 5th item (i.e., i = 1, 3, 5); 2) The display
duration for each item is set to 1s, 2s, and 3s (i.e., td = 1, 2, 3s). This
makes a total of nine display configurations for each task.

https://devzone.nordicsemi.com/power/w/opp/2/online-power-profiler-for-bluetooth-le
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Figure 3: Boxplot of Reaction time vs. display duration (a).
Boxplots for overall (b), mental (c), and physical (d) ratings
under different display configurations.

We recruited 8 participants (4 Females) from a local institution
with ages ranging from 23 to 31 (M=26.6, SD=3.0). They all had
smart home control experiences. All participants were asked to
sanitize their hands before and after the experiment. All participants
wore the smartwatch on their right hand and touched the button
using the same hand. Each participant completed two repetitive
sessions of the experiment. Each session had four blocks, each
corresponding to one control task; each block had nine trials, each
corresponding to one display configuration. After each trial, the
user rated each trial’s overall preference (“highly undesirable” to
“highly undesirable”), mental, and physical efforts (“Very High” to
“Very Low”) on a 7-point Likert scale (the higher the better). The
sequence of blocks and trials are randomized.

4.1 Results Analysis
There is a total of 8 participants × 2 Sessions × 4 Blocks × 9 Trials
= 576 trials, 64 for each display configuration. Surprisingly, Fried-
man test results indicate that different types of control tasks do
not significantly impact overall preference ratings (Figure 3b). We
speculate that our prototype requires similar human efforts (touch
and release from the widget) when completing different types of
control tasks.

The median reaction time (Figure 3a) is 0.7 seconds, 0.9 sec-
onds, and 1 second for td = 1, 2, 3 seconds respectively. Two-way
RM-ANOVA results with Greenhouse-Geisser correction show that
the reaction time for later appeared target function is signif-
icantly smaller (F2,14 = 13.0,p < .01). For example, participants
select 6.2% (td = 1s), 9.4%(td = 2s), and 7.0%(td = 2s) faster for
i = 3 compared to those when i = 1. Variance analysis of Aligned
Rank Transformed data shows that both the appear order (F2,56 =
6.68,p < .01) and display duration (F2,56 = 17.2,p < .001) have
significant impacts on subjective ratings. Specifically, the display
duration has a significant effect on the mental effort rating (F2,56 =
40.5,p < .001), but not on the physical effort (F2,56 = 1.83,p = .17);
the appearance order (how many items need to be viewed before
the correct item is displayed), on the other hand, has a significant

effect on the physical effort rating (F2,56 = 20.1,p < .001), but not
on the mental effort (F2,56 = 1.04,p = .36). The results indicate that
mental efforts are mainly due to the limited reaction time,
while the physical efforts aremainly due to the extended fin-
ger pressing period. The participants felt that a 1-second display
duration is too short of selecting, especially when the target item
appears as the first item. They are neutral (MEDIAN = 4) for the 1-
second display duration for all three appearance orders. Obviously,
they preferred the target function to appear as early as possible. For
a more practical evaluation, we set the target function to appear
within the Top 3 items with a display duration of 2 seconds because
such a configuration still has a positive overall rating (MEDIAN =
5).

5 USER STUDY 2: EVALUATION
We evaluated our prototype system under three scenarios: 1) Work-
ing, the user presents slides on a laptop with colleagues on the
phone. The touch interface is deployed on the tabletop; 2) Read-
ing, the user turns off the TV and starts to read a book in the
living room. Two touch interfaces are deployed on a coffee cup
and a book’s back cover; 3) Returning Home, the user completes a
daily routine after returning home. The touch interface is deployed
on the user’s palm. Table 1 shows the detailed devices, functions,
and task sequences. Aside from BoldMove, we also implemented a
conventional IoT control method with device-based filtering and
menu-navigated selection as a baseline. The user navigates through
the device and function menus using the two switch buttons and
confirms selection using the toggle button. An example is shown
in Figure 4a. Even though such a method is not efficient on our
interface, we were still interested to understand the quantitative
differences between the two methods.

We recruited 7 participants from a technology company. Their
ages range from 19 to 32 (M=27.9, SD=5.71). They all had IoT device
control experiences. The study lasted about 1 hour. Each partici-
pant was compensated with two $7 coffee coupons. To achieve a
more realistic control experience, an experimenter observed user
behavior and controlled the devices using remote controllers. All
participants were asked to sanitize their hands before and after the
experiment.

Figure 4b-d shows the experiment settings. For each scenario,
the participant was asked to complete the same task sequence twice
using BoldMove and the menu-based selection method respectively.
The sequence of the scenarios was randomized. After each scenario,
the participant rated BoldMove in terms of mental and physical
efforts, as well as overall experience using a 7-point Likert scale
(the higher, the better).

5.1 Results Analysis
We collected data for 7 participants × 3 scenarios × 7 tasks =
147 tasks. The overall average selection time for each task across
the three scenarios is 3.25 seconds (MEDIAN = 3.10 seconds, SD
= 2.34 seconds). Note that this is with a strong assumption that
the target function appears within the Top-3 items (n = 3). n is
determined by the number of matched functions for each semantic.
In this study, nmax = 5. Based on the analysis in Section 3, the
maximal estimate task selection time Tmax = 3.25 + 2 × td/2 =
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Table 1: The IoT devices, their corresponding functions, and task sequences for the three tested scenarios.

Devices and Functions Task Sequence

Scenario 1: Working
Laptop: Toggle Sleep, Switch Slide,
Toggle Mute, Adjust Brightness,
Adjust Volume, Switch Desktop;
Conference Phone:
Toggle Answer, Toggle Mute,
Toggle Redial, Adjust Volume.

1 Redial the phone.
2 Decrease Volume of the phone.
3 Unmute Microphone of the phone.
4 Increase Volume of the laptop.
5 Turn to Previous Slide 1 time on the laptop.
6 Turn to Next Slide 1 time on the laptop.
7 Mute Speaker the laptop.
8 Hang Up the phone.

Scenario 2: Reading
TV: Toggle Power, Switch Episode,
Adjust Volume;
Lamp: Toggle Power, Switch Mode,
Adjust Brightness;
Smart Speaker: Toggle Play,
Switch Song, Adjust Volume.

1 Previous Channel from the cup.
2 Power Off TV from the cup.
3 Power On Lamp from the cup.
4 Increase Lightness of Lamp from the book.
5 Start Play of the smart speaker from the book.
6 Next song from the book.
7 Decrease Volume of the speaker from the book.
8 Power Off Lamp from the book.

Scenario 3: Returning Home
Light: Toggle Power, Adjust Brightness;
Curtain: Toggle Open, Adjust Position;
TV: Toggle Power, Adjust Volume;
AC: Toggle Power, Switch Fan Speed;
Air Purifier: Toggle Power,
Switch Fan Speed

1 Power On the light.
2 Close the curtain.
3 Switch to Next Fan Speed of the Air Purifier.
4 Switch to Previous Fan Speed of the AC.
5 Open the TV.
6 Increase Volume of the TV.
7 Decrease Lightness of the Light.
8 Close the TV.

5.25 seconds. This is still much smaller than that of the baseline
method, which consumed 10.22 seconds on average (MEDIAN =
8.67 seconds, SD=5.66 seconds) to complete a task. We suspect
such a difference is mainly due to two reasons: 1) The semantic-
based filtering happens in-situ with the finger press while
the device-based flitering requires explicit device selection;
2) Themenu-navigated selectionmethods involve too many
button clicks while BoldMove only requries one “long click”.
Each click will introduce noticable lagging because of touch
sensing, data communication, and display feedback on such
a resource-constrained touch interface.

The subjective ratings are shown in Figure 4e. We can see that
ratings of BoldMove improve with the number of devices. Three par-
ticipants complained that the baseline method involves too many
clicks. P4 said “The new method (BoldMove) is intuitive and straight-
forward. The many clicks of the conventional method suddenly feel
redundant.” Two participants mentioned that BoldMove demands
higher mental effort since the countdown timer made them ner-
vous. P6 (a machine learning engineer) commented that it should
be easy to implement a recommendation algorithm for BoldMove
since “there is more information” and “the optimization goal is clearly
defined”.

6 DISCUSSION, LIMITATION, AND FUTURE
WORK

Study 1 shows that users are reluctant to use BoldMove when the
target appears after the first three items. However, BoldMove’s

scalability has great room for improvement. Fisrt, the user can com-
bine semantic filtering with device filtering of functions to further
reduce items for selection. For example, the user can use BoldMove
on the touch interface of the target device so that only the device’s
functions are included for later selection. The remaining function
can then be fewer than three; Second, a recommendation algorithm
can be implemented based on the context. For example, the system
can sort the appearance order based on selection possibilities. In
this way, it becomes possible that the target function is within the
Top-3 recommendations. At last, previous research [20] has shown
that it is possible to design a more efficient touch interface to im-
prove the input efficiency of the wait-confirm selection strategy.
Development and evaluation of these methods to improve Bold-
Move’s scalability are beyond the scope of this paper, which we
plan to explore in the future.

The underlying concept of BoldMove can be readily applied to
input modalities other than touch, as long as it can express the three
basic types of semantics with a wait-confirm selection strategy. It is
especially useful for input modalities that can easily express input
semantics but cannot easily indicate devices and functions, such as
interaction using teeth [14], feet [12], and hair [4].

One of the limitations of this work is that the experiments were
conducted in a controlled lab environment. BoldMove is also suitible
for public smart spaces where ultra-low-power ubiquitous control is
a better fit. Sowe plan to conduct in-the-wild outdoor user studies to
understand user needs and better evaluate the concept in real usage
settings. We also plan to validate BoldMove’s performance on a self-
powered touch interface with a local E-ink display [6]. For touch



CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA T.Zhang et.al.

Figure 4: (a) IoT control procedure using our ubiquitous in-
terface with device-based filtering and menu navigation. (b)
Scenario 1: Users issue commands using a touch interface
on the table; (c) Scenario 2: Users issue commands using two
touch interfaces, one on a cup and the other on a book; (d)
Scenario 3: Users issue commands using an on-body touch
interface; (e) Mental, physical, and overall user rating of
BoldMove

interfaces with moderate input lag, the ’multiple-click’ selection
strategy (long click on buttons for semantic selection, short click on
left/right arrow buttons to navigate through candidate functions,
and on the toggle button to confirm) can be more efficient. We
plan to conduct studies to understand the user’s preference for the
passive wait-confirm ’one-click’ strategy and the active navigate-
confirm ’multiple-click’ strategy regarding input delay. Another
interesting research topic is the theoretical analysis of the semantic-
based filtering method based on information entropy.

7 CONCLUSION
BoldMove is a novel IoT device control interaction design for resource-
constrained touch interfaces. It leverages in-situ semantic-based
function filtering to improve selection efficiency. It uses a ’one-click’
wait-confirm sequential selection strategy to avoid lags due to sens-
ing, communication, and feedback for each click operation. The
results of User Study 1 show that users prefer the target function
to appear within the first three items with a display duration of 2
seconds. We then implemented this configuration and evaluated our
system in User Study 2. BoldMove outperforms the conventional
control method with device-based function filtering and menu-
navigated selection on such a resource-constrained interface. We
argue that BoldMove can be readily applied to other input modali-
ties, especially those with limited input ability.
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